top of page
Writer's pictureHackers Realm

Facial Emotion Recognition using Python | Image Classification | CNN | Deep Learning

Updated: May 31, 2023

Explore the realm of facial emotion recognition with Python! This tutorial delves into image classification, CNN, and deep learning techniques to decipher emotions from facial expressions. Learn to build an accurate model that can detect and classify emotions in real-time. Enhance your understanding of computer vision and dive into the fascinating world of deep learning. Unlock the power of facial emotion recognition with this comprehensive project tutorial. #FacialEmotionRecognition #Python #ImageClassification #CNN #DeepLearning #ComputerVision

Facial Emotion Recognition using CNN
Facial Emotion Recognition using CNN

In this project tutorial we will use Convolutional Neural Network (CNN) for image feature extraction and visualize the results with plot graphs.


You can watch the video-based tutorial with step by step explanation down below.


Dataset Information

The objective of the project is to detect facial expression using facial image dataset. Convolutional Neural Network is used to classify the images. The output class consists of 7 different types namely angry, disgust, fear, happy, neutral, sad, surprise.


Environment: kaggle


You may download the facial emotion dataset here


Import Modules

import pandas as pd
import numpy as np
import os
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
import random
from tqdm.notebook import tqdm
warnings.filterwarnings('ignore')
%matplotlib inline

import tensorflow as tf
from tensorflow.keras.utils import to_categorical
from keras.preprocessing.image import load_img
from keras.models import Sequential
from keras.layers import Dense, Conv2D, Dropout, Flatten, MaxPooling2D
  • pandas - used to perform data manipulation and analysis

  • numpy - used to perform a wide variety of mathematical operations on arrays

  • matplotlib - used for data visualization and graphical plotting

  • seaborn - built on top of matplotlib with similar functionalities

  • os - used to handle files using system commands

  • tqdm - progress bar decorator for iterators

  • warnings - to manipulate warnings details, filterwarnings('ignore') is to ignore the warnings thrown by the modules (gives clean results)

  • load_img - used for loading the image as numpy array

  • tensorflow – backend module for the use of Keras

  • Dense - single dimension linear layer

  • Dropout - used to add regularization to the data, avoiding over fitting & dropping out a fraction of the data

  • Activation - layer for the use of certain threshold

  • Flatten - convert a 2D array into a 1D array

  • Conv2D - convolutional layer in 2 dimension

  • MaxPooling2D - function to get the maximum pixel value to the next layer


Load the Dataset


Now we load the test data and the train data for processing

TRAIN_DIR = '../input/facial-expression-dataset/train/train/'
TEST_DIR = '../input/facial-expression-dataset/test/test/'

Now we define the directory for the images and with the corresponding labels

def load_dataset(directory):
    image_paths = []
    labels = []
    
    for label in os.listdir(directory):
        for filename in os.listdir(directory+label):
            image_path = os.path.join(directory, label, filename)
            image_paths.append(image_path)
            labels.append(label)
            
        print(label, "Completed")
    
    return image_paths, labels

Now we initialize the dataframe

## convert into dataframe
train = pd.DataFrame()
train['image'], train['label'] = load_dataset(TRAIN_DIR)
# shuffle the dataset
train = train.sample(frac=1).reset_index(drop=True)
train.head()

surprise Completed fear Completed angry Completed neutral Completed sad Completed disgust Completed happy Completed

Facial Expression Train Dataset
Facial Expression Train Dataset
  • Display of image paths with labels of the train dataset

  • Data was shuffled and the index was removed


test = pd.DataFrame()
test['image'], test['label'] = load_dataset(TEST_DIR)
test.head()

surprise Completed fear Completed angry Completed neutral Completed sad Completed disgust Completed happy Completed

Facial Expression Test Dataset
Facial Expression Test Dataset
  • Display of image paths with labels of the test dataset

  • It is not necessary to shuffle the test data


Exploratory Data Analysis


sns.countplot(train['label'])

Visualization of Label Count for the facial expression Dataset
Visualization of Label Count for the Dataset
  • Display of the no. of samples in the dataset

  • Happy has more data samples compared to other classes

  • The rest of the classes has a uniform distribution

  • Disgust has less samples for training



from PIL import Image
img = Image.open(train['image'][0])
plt.imshow(img, cmap='gray');
Sample facial expression image
Sample Image
  • The images are in grayscale, so color map is declared as gray

  • This is the first sample from the data, which is surprise

  • The resolution of the image is 48 x 48


Now we will display a grid of images to see various images at once

# to display grid of images
plt.figure(figsize=(20,20))
files = train.iloc[0:25]

for index, file, label in files.itertuples():
    plt.subplot(5, 5, index+1)
    img = load_img(file)
    img = np.array(img)
    plt.imshow(img)
    plt.title(label)
    plt.axis('off')
Sample Images with Different Facial Expressions
Sample Images with Different Facial Expressions
Sample Images with Different Facial Expressions
  • Display of 25 different images from different classes

  • Image size was reduced to minimize the blurriness of the images


Feature Extraction


Now we define the feature extraction method

def extract_features(images):
    features = []
    for image in tqdm(images):
        img = load_img(image, grayscale=True)
        img = np.array(img)
        features.append(img)
    features = np.array(features)
    features = features.reshape(len(features), 48, 48, 1)
    return features
  • Pixel features of the images are extracted

  • Images are converted into arrays and reshaped to the proper format

  • tqdm creates a loading bar to help track the conversion process of the images


Now we extract the features from both train and test

train_features = extract_features(train['image'])
test_features = extract_features(test['image'])

Now we normalize the images

## normalize the image
x_train = train_features/255.0
x_test = test_features/255.0
  • This converts the pixel value from 1 to 255 into a normalized range of 0 to 1

  • Normalization is useful for the neural network to easily capture the information


## convert label to integer
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
le.fit(train['label'])
y_train = le.transform(train['label'])
y_test = le.transform(test['label'])
  • Convert the data type of 'label' to integer for easier processing


y_train = to_categorical(y_train, num_classes=7)
y_test = to_categorical(y_test, num_classes=7) 
  • One hot encoding the data

  • The model works better if the data is one hot encoded


y_train[0]

array([0., 0., 0., 0., 0., 0., 1.], dtype=float32)


# config
input_shape = (48, 48, 1)
output_class = 7
  • input_shape = (48, 48, 1) - Converts the input image into 48 x 48 resolution in grayscale

  • output_class = 7 - Total no. of clases


Model Creation

model = Sequential()
# convolutional layers
model.add(Conv2D(128, kernel_size=(3,3), activation='relu', input_shape=input_shape))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Dropout(0.4))

model.add(Conv2D(256, kernel_size=(3,3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Dropout(0.4))

model.add(Conv2D(512, kernel_size=(3,3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Dropout(0.4))

model.add(Conv2D(512, kernel_size=(3,3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Dropout(0.4))

model.add(Flatten())
# fully connected layers
model.add(Dense(512, activation='relu'))
model.add(Dropout(0.4))
model.add(Dense(256, activation='relu'))
model.add(Dropout(0.3))
# output layer
model.add(Dense(output_class, activation='softmax'))

model.compile(optimizer='adam', loss='categorical_crossentropy', metrics='accuracy')
  • Augmentation is not necessary since the images are small

  • optimizer=’adam’ - automatically adjust the learning rate for the model over the no. of epochs

  • activation='softmax' - used for multi-classification output

  • loss=’categorical_crossentropy’ - loss function for category outputs


Now we proceed to train the dataset

# train the model
history = model.fit(x=x_train, y=y_train, batch_size=128, epochs=100, validation_data=(x_test, y_test))

Epoch 1/100

225/225 [==============================] - 14s 31ms/step - loss: 1.8218 - accuracy: 0.2478 - val_loss: 1.8159 - val_accuracy: 0.2471 Epoch 2/100 225/225 [==============================] - 6s 29ms/step - loss: 1.8052 - accuracy: 0.2524 - val_loss: 1.7856 - val_accuracy: 0.2536 Epoch 3/100 225/225 [==============================] - 7s 29ms/step - loss: 1.7432 - accuracy: 0.2815 - val_loss: 1.6658 - val_accuracy: 0.3238 Epoch 4/100 225/225 [==============================] - 7s 29ms/step - loss: 1.6653 - accuracy: 0.3316 - val_loss: 1.6392 - val_accuracy: 0.3487 Epoch 5/100 225/225 [==============================] - 6s 29ms/step - loss: 1.5647 - accuracy: 0.3882 - val_loss: 1.4292 - val_accuracy: 0.4551 Epoch 6/100 225/225 [==============================] - 7s 29ms/step - loss: 1.4872 - accuracy: 0.4198 - val_loss: 1.3768 - val_accuracy: 0.4628 Epoch 7/100 225/225 [==============================] - 6s 29ms/step - loss: 1.4452 - accuracy: 0.4432 - val_loss: 1.3394 - val_accuracy: 0.4816 Epoch 8/100 225/225 [==============================] - 6s 29ms/step - loss: 1.4051 - accuracy: 0.4593 - val_loss: 1.2939 - val_accuracy: 0.4975 Epoch 9/100 225/225 [==============================] - 7s 29ms/step - loss: 1.3732 - accuracy: 0.4733 - val_loss: 1.2677 - val_accuracy: 0.5123 Epoch 10/100 225/225 [==============================] - 6s 29ms/step - loss: 1.3417 - accuracy: 0.4838 - val_loss: 1.2567 - val_accuracy: 0.5195

Epoch 11/100 225/225 [==============================] - 6s 29ms/step - loss: 1.3189 - accuracy: 0.4936 - val_loss: 1.2226 - val_accuracy: 0.5297


Epoch 12/100 225/225 [==============================] - 6s 29ms/step - loss: 1.3063 - accuracy: 0.5017 - val_loss: 1.2336 - val_accuracy: 0.5294 Epoch 13/100 225/225 [==============================] - 6s 29ms/step - loss: 1.2849 - accuracy: 0.5076 - val_loss: 1.1776 - val_accuracy: 0.5492 Epoch 14/100 225/225 [==============================] - 7s 29ms/step - loss: 1.2665 - accuracy: 0.5198 - val_loss: 1.1635 - val_accuracy: 0.5566 Epoch 15/100 225/225 [==============================] - 6s 29ms/step - loss: 1.2532 - accuracy: 0.5224 - val_loss: 1.1527 - val_accuracy: 0.5559 Epoch 16/100 225/225 [==============================] - 6s 29ms/step - loss: 1.2382 - accuracy: 0.5283 - val_loss: 1.1492 - val_accuracy: 0.5568 Epoch 17/100 225/225 [==============================] - 6s 29ms/step - loss: 1.2277 - accuracy: 0.5344 - val_loss: 1.1441 - val_accuracy: 0.5639 Epoch 18/100 225/225 [==============================] - 7s 29ms/step - loss: 1.2091 - accuracy: 0.5413 - val_loss: 1.1344 - val_accuracy: 0.5665 Epoch 19/100 225/225 [==============================] - 7s 29ms/step - loss: 1.1989 - accuracy: 0.5445 - val_loss: 1.1263 - val_accuracy: 0.5698 Epoch 20/100 225/225 [==============================] - 6s 29ms/step - loss: 1.1978 - accuracy: 0.5453 - val_loss: 1.1237 - val_accuracy: 0.5702



Epoch 21/100 225/225 [==============================] - 6s 29ms/step - loss: 1.1810 - accuracy: 0.5502 - val_loss: 1.1084 - val_accuracy: 0.5741 Epoch 22/100 225/225 [==============================] - 6s 29ms/step - loss: 1.1712 - accuracy: 0.5583 - val_loss: 1.1100 - val_accuracy: 0.5762 Epoch 23/100 225/225 [==============================] - 6s 29ms/step - loss: 1.1635 - accuracy: 0.5582 - val_loss: 1.0952 - val_accuracy: 0.5779 Epoch 24/100 225/225 [==============================] - 7s 29ms/step - loss: 1.1544 - accuracy: 0.5636 - val_loss: 1.1017 - val_accuracy: 0.5741 Epoch 25/100 225/225 [==============================] - 6s 29ms/step - loss: 1.1455 - accuracy: 0.5676 - val_loss: 1.0890 - val_accuracy: 0.5829 Epoch 26/100 225/225 [==============================] - 6s 29ms/step - loss: 1.1366 - accuracy: 0.5721 - val_loss: 1.0854 - val_accuracy: 0.5822 Epoch 27/100 225/225 [==============================] - 6s 29ms/step - loss: 1.1228 - accuracy: 0.5773 - val_loss: 1.0724 - val_accuracy: 0.5935 Epoch 28/100 225/225 [==============================] - 6s 29ms/step - loss: 1.1224 - accuracy: 0.5755 - val_loss: 1.0771 - val_accuracy: 0.5889 Epoch 29/100 225/225 [==============================] - 7s 30ms/step - loss: 1.1160 - accuracy: 0.5811 - val_loss: 1.0764 - val_accuracy: 0.5919 Epoch 30/100 225/225 [==============================] - 7s 29ms/step - loss: 1.1161 - accuracy: 0.5796 - val_loss: 1.0702 - val_accuracy: 0.5914


Epoch 31/100 225/225 [==============================] - 6s 29ms/step - loss: 1.1035 - accuracy: 0.5836 - val_loss: 1.0816 - val_accuracy: 0.5864 Epoch 32/100 225/225 [==============================] - 6s 29ms/step - loss: 1.0941 - accuracy: 0.5926 - val_loss: 1.0675 - val_accuracy: 0.5963 Epoch 33/100 225/225 [==============================] - 6s 29ms/step - loss: 1.0892 - accuracy: 0.5892 - val_loss: 1.0678 - val_accuracy: 0.5946 Epoch 34/100 225/225 [==============================] - 7s 29ms/step - loss: 1.0886 - accuracy: 0.5887 - val_loss: 1.0627 - val_accuracy: 0.6010 Epoch 35/100 225/225 [==============================] - 7s 29ms/step - loss: 1.0653 - accuracy: 0.6000 - val_loss: 1.0540 - val_accuracy: 0.5954 Epoch 36/100 225/225 [==============================] - 6s 29ms/step - loss: 1.0660 - accuracy: 0.5983 - val_loss: 1.0544 - val_accuracy: 0.6025 Epoch 37/100 225/225 [==============================] - 6s 29ms/step - loss: 1.0673 - accuracy: 0.5986 - val_loss: 1.0633 - val_accuracy: 0.5949 Epoch 38/100 225/225 [==============================] - 6s 28ms/step - loss: 1.0485 - accuracy: 0.6078 - val_loss: 1.0528 - val_accuracy: 0.5982 Epoch 39/100 225/225 [==============================] - 6s 29ms/step - loss: 1.0419 - accuracy: 0.6083 - val_loss: 1.0494 - val_accuracy: 0.6046 Epoch 40/100 225/225 [==============================] - 7s 29ms/step - loss: 1.0392 - accuracy: 0.6074 - val_loss: 1.0483 - val_accuracy: 0.6070


Epoch 41/100 225/225 [==============================] - 6s 29ms/step - loss: 1.0396 - accuracy: 0.6082 - val_loss: 1.0508 - val_accuracy: 0.6059 Epoch 42/100 225/225 [==============================] - 6s 29ms/step - loss: 1.0320 - accuracy: 0.6121 - val_loss: 1.0501 - val_accuracy: 0.6011 Epoch 43/100 225/225 [==============================] - 6s 29ms/step - loss: 1.0233 - accuracy: 0.6161 - val_loss: 1.0453 - val_accuracy: 0.6099 Epoch 44/100 225/225 [==============================] - 6s 29ms/step - loss: 1.0147 - accuracy: 0.6167 - val_loss: 1.0366 - val_accuracy: 0.6073 Epoch 45/100 225/225 [==============================] - 7s 29ms/step - loss: 1.0097 - accuracy: 0.6230 - val_loss: 1.0467 - val_accuracy: 0.6048 Epoch 46/100 225/225 [==============================] - 7s 29ms/step - loss: 1.0191 - accuracy: 0.6184 - val_loss: 1.0497 - val_accuracy: 0.6057 Epoch 47/100 225/225 [==============================] - 6s 29ms/step - loss: 1.0009 - accuracy: 0.6241 - val_loss: 1.0445 - val_accuracy: 0.6119 Epoch 48/100 225/225 [==============================] - 6s 29ms/step - loss: 0.9992 - accuracy: 0.6242 - val_loss: 1.0459 - val_accuracy: 0.6076 Epoch 49/100 225/225 [==============================] - 7s 29ms/step - loss: 0.9926 - accuracy: 0.6292 - val_loss: 1.0314 - val_accuracy: 0.6071 Epoch 50/100 225/225 [==============================] - 7s 30ms/step - loss: 0.9900 - accuracy: 0.6272 - val_loss: 1.0436 - val_accuracy: 0.6055


Epoch 51/100 225/225 [==============================] - 7s 29ms/step - loss: 0.9812 - accuracy: 0.6349 - val_loss: 1.0347 - val_accuracy: 0.6117 Epoch 52/100 225/225 [==============================] - 7s 29ms/step - loss: 0.9747 - accuracy: 0.6349 - val_loss: 1.0333 - val_accuracy: 0.6120 Epoch 53/100 225/225 [==============================] - 6s 29ms/step - loss: 0.9731 - accuracy: 0.6376 - val_loss: 1.0249 - val_accuracy: 0.6108 Epoch 54/100 225/225 [==============================] - 7s 29ms/step - loss: 0.9672 - accuracy: 0.6365 - val_loss: 1.0322 - val_accuracy: 0.6141 Epoch 55/100 225/225 [==============================] - 7s 29ms/step - loss: 0.9626 - accuracy: 0.6434 - val_loss: 1.0242 - val_accuracy: 0.6156 Epoch 56/100 225/225 [==============================] - 7s 29ms/step - loss: 0.9481 - accuracy: 0.6465 - val_loss: 1.0284 - val_accuracy: 0.6127 Epoch 57/100 225/225 [==============================] - 7s 29ms/step - loss: 0.9576 - accuracy: 0.6449 - val_loss: 1.0284 - val_accuracy: 0.6152 Epoch 58/100 225/225 [==============================] - 7s 30ms/step - loss: 0.9499 - accuracy: 0.6460 - val_loss: 1.0208 - val_accuracy: 0.6160 Epoch 59/100 225/225 [==============================] - 7s 29ms/step - loss: 0.9435 - accuracy: 0.6452 - val_loss: 1.0327 - val_accuracy: 0.6074 Epoch 60/100 225/225 [==============================] - 7s 30ms/step - loss: 0.9449 - accuracy: 0.6467 - val_loss: 1.0199 - val_accuracy: 0.6211


Epoch 61/100 225/225 [==============================] - 7s 29ms/step - loss: 0.9341 - accuracy: 0.6538 - val_loss: 1.0220 - val_accuracy: 0.6181 Epoch 62/100 225/225 [==============================] - 7s 29ms/step - loss: 0.9347 - accuracy: 0.6516 - val_loss: 1.0261 - val_accuracy: 0.6179 Epoch 63/100 225/225 [==============================] - 6s 29ms/step - loss: 0.9232 - accuracy: 0.6582 - val_loss: 1.0252 - val_accuracy: 0.6172 Epoch 64/100 225/225 [==============================] - 7s 29ms/step - loss: 0.9212 - accuracy: 0.6594 - val_loss: 1.0255 - val_accuracy: 0.6176 Epoch 65/100 225/225 [==============================] - 7s 29ms/step - loss: 0.9238 - accuracy: 0.6555 - val_loss: 1.0198 - val_accuracy: 0.6193 Epoch 66/100 225/225 [==============================] - 7s 29ms/step - loss: 0.9115 - accuracy: 0.6615 - val_loss: 1.0285 - val_accuracy: 0.6179 Epoch 67/100 225/225 [==============================] - 7s 30ms/step - loss: 0.9076 - accuracy: 0.6616 - val_loss: 1.0253 - val_accuracy: 0.6232 Epoch 68/100 225/225 [==============================] - 6s 29ms/step - loss: 0.9027 - accuracy: 0.6646 - val_loss: 1.0196 - val_accuracy: 0.6251 Epoch 69/100 225/225 [==============================] - 7s 29ms/step - loss: 0.9028 - accuracy: 0.6634 - val_loss: 1.0252 - val_accuracy: 0.6169 Epoch 70/100 225/225 [==============================] - 7s 29ms/step - loss: 0.8905 - accuracy: 0.6726 - val_loss: 1.0166 - val_accuracy: 0.6222


Epoch 71/100 225/225 [==============================] - 7s 29ms/step - loss: 0.8910 - accuracy: 0.6724 - val_loss: 1.0226 - val_accuracy: 0.6254 Epoch 72/100 225/225 [==============================] - 7s 29ms/step - loss: 0.8885 - accuracy: 0.6717 - val_loss: 1.0107 - val_accuracy: 0.6252 Epoch 73/100 225/225 [==============================] - 6s 29ms/step - loss: 0.8775 - accuracy: 0.6746 - val_loss: 1.0078 - val_accuracy: 0.6282 Epoch 74/100 225/225 [==============================] - 6s 29ms/step - loss: 0.8832 - accuracy: 0.6741 - val_loss: 1.0181 - val_accuracy: 0.6293 Epoch 75/100 225/225 [==============================] - 7s 29ms/step - loss: 0.8732 - accuracy: 0.6784 - val_loss: 1.0121 - val_accuracy: 0.6303 Epoch 76/100 225/225 [==============================] - 7s 29ms/step - loss: 0.8729 - accuracy: 0.6776 - val_loss: 1.0181 - val_accuracy: 0.6258 Epoch 77/100 225/225 [==============================] - 7s 29ms/step - loss: 0.8624 - accuracy: 0.6793 - val_loss: 1.0195 - val_accuracy: 0.6268 Epoch 78/100 225/225 [==============================] - 6s 29ms/step - loss: 0.8577 - accuracy: 0.6814 - val_loss: 1.0172 - val_accuracy: 0.6305 Epoch 79/100 225/225 [==============================] - 7s 29ms/step - loss: 0.8570 - accuracy: 0.6850 - val_loss: 1.0207 - val_accuracy: 0.6258 Epoch 80/100 225/225 [==============================] - 7s 29ms/step - loss: 0.8553 - accuracy: 0.6842 - val_loss: 1.0134 - val_accuracy: 0.6254


Epoch 81/100 225/225 [==============================] - 7s 29ms/step - loss: 0.8550 - accuracy: 0.6830 - val_loss: 1.0204 - val_accuracy: 0.6279 Epoch 82/100 225/225 [==============================] - 6s 29ms/step - loss: 0.8450 - accuracy: 0.6876 - val_loss: 1.0171 - val_accuracy: 0.6298 Epoch 83/100 225/225 [==============================] - 6s 29ms/step - loss: 0.8396 - accuracy: 0.6934 - val_loss: 1.0373 - val_accuracy: 0.6248 Epoch 84/100 225/225 [==============================] - 6s 29ms/step - loss: 0.8372 - accuracy: 0.6930 - val_loss: 1.0185 - val_accuracy: 0.6315 Epoch 85/100 225/225 [==============================] - 7s 29ms/step - loss: 0.8328 - accuracy: 0.6945 - val_loss: 1.0143 - val_accuracy: 0.6305 Epoch 86/100 225/225 [==============================] - 7s 29ms/step - loss: 0.8305 - accuracy: 0.6939 - val_loss: 1.0149 - val_accuracy: 0.6291 Epoch 87/100 225/225 [==============================] - 6s 29ms/step - loss: 0.8228 - accuracy: 0.6999 - val_loss: 1.0286 - val_accuracy: 0.6287 Epoch 88/100 225/225 [==============================] - 6s 29ms/step - loss: 0.8185 - accuracy: 0.6990 - val_loss: 1.0092 - val_accuracy: 0.6312 Epoch 89/100 225/225 [==============================] - 6s 29ms/step - loss: 0.8137 - accuracy: 0.7020 - val_loss: 1.0170 - val_accuracy: 0.6371 Epoch 90/100 225/225 [==============================] - 7s 29ms/step - loss: 0.8160 - accuracy: 0.7028 - val_loss: 1.0126 - val_accuracy: 0.6395


Epoch 91/100 225/225 [==============================] - 7s 29ms/step - loss: 0.8035 - accuracy: 0.7037 - val_loss: 1.0184 - val_accuracy: 0.6304 Epoch 92/100 225/225 [==============================] - 6s 29ms/step - loss: 0.8029 - accuracy: 0.7034 - val_loss: 1.0130 - val_accuracy: 0.6329 Epoch 93/100 225/225 [==============================] - 7s 29ms/step - loss: 0.8005 - accuracy: 0.7082 - val_loss: 1.0127 - val_accuracy: 0.6354 Epoch 94/100 225/225 [==============================] - 6s 29ms/step - loss: 0.8059 - accuracy: 0.7052 - val_loss: 1.0169 - val_accuracy: 0.6317 Epoch 95/100 225/225 [==============================] - 7s 29ms/step - loss: 0.7935 - accuracy: 0.7096 - val_loss: 1.0140 - val_accuracy: 0.6329 Epoch 96/100 225/225 [==============================] - 7s 29ms/step - loss: 0.7909 - accuracy: 0.7113 - val_loss: 1.0149 - val_accuracy: 0.6297 Epoch 97/100 225/225 [==============================] - 6s 29ms/step - loss: 0.7882 - accuracy: 0.7113 - val_loss: 1.0152 - val_accuracy: 0.6311 Epoch 98/100 225/225 [==============================] - 6s 29ms/step - loss: 0.7829 - accuracy: 0.7118 - val_loss: 1.0143 - val_accuracy: 0.6319 Epoch 99/100 225/225 [==============================] - 6s 29ms/step - loss: 0.7819 - accuracy: 0.7156 - val_loss: 1.0176 - val_accuracy: 0.6372 Epoch 100/100 225/225 [==============================] - 6s 29ms/step - loss: 0.7840 - accuracy: 0.7151 - val_loss: 1.0282 - val_accuracy: 0.6317


  • Set the no. of epochs and batch size according to the hardware specifications

  • Training accuracy and validation accuracy increases each iteration

  • Training loss and validation loss decreases each iteration


Plot the Results

acc = history.history['accuracy']
val_acc = history.history['val_accuracy']
epochs = range(len(acc))

plt.plot(epochs, acc, 'b', label='Training Accuracy')
plt.plot(epochs, val_acc, 'r', label='Validation Accuracy')
plt.title('Accuracy Graph')
plt.legend()
plt.figure()

loss = history.history['loss']
val_loss = history.history['val_loss']
epochs = range(len(acc))

plt.plot(epochs, loss, 'b', label='Training Loss')
plt.plot(epochs, val_loss, 'r', label='Validation Loss')
plt.title('Loss Graph')
plt.legend()

plt.show()
Training & Validation Accuracy
Training & Validation Accuracy


Training & Validation Loss
Training & Validation Loss
  • Highest training accuracy was 71.56

  • Highest validation accuracy was 63.72

  • Lowest training loss was 78.19

  • Lowest validation loss was 100.92


Test with Image Data


Now we will display a few random images with its label and predict the output

image_index = random.randint(0, len(test))
print("Original Output:", test['label'][image_index])
pred = model.predict(x_test[image_index].reshape(1, 48, 48, 1))
prediction_label = le.inverse_transform([pred.argmax()])[0]
print("Predicted Output:", prediction_label)
plt.imshow(x_test[image_index].reshape(48, 48), cmap='gray');

Original Output: happy Predicted Output: happy

Sample Test Image for Happy Facial Expression


image_index = random.randint(0, len(test))
print("Original Output:", test['label'][image_index])
pred = model.predict(x_test[image_index].reshape(1, 48, 48, 1))
prediction_label = le.inverse_transform([pred.argmax()])[0]
print("Predicted Output:", prediction_label)
plt.imshow(x_test[image_index].reshape(48, 48), cmap='gray');

Original Output: sad Predicted Output: sad

Sample Test Image for sad Facial Expression


image_index = random.randint(0, len(test))
print("Original Output:", test['label'][image_index])
pred = model.predict(x_test[image_index].reshape(1, 48, 48, 1))
prediction_label = le.inverse_transform([pred.argmax()])[0]
print("Predicted Output:", prediction_label)
plt.imshow(x_test[image_index].reshape(48, 48), cmap='gray');

Original Output: fear Predicted Output: surprise

Sample Test Image for Fear Facial Expression
  • Random display of images with original output and predicted output

  • Some cases the output may differ due to facial expression similarities like fear and surprise.

  • Overall the model predicted very good results.


Final Thoughts

  • Training the model by increasing the no. of epochs can give better and more accurate results.

  • Processing large amount of data can take a lot of time and system resources.

  • Basic deep learning model trained in a neural network, adding new layers varies the results.


In this project tutorial, we have explored the Facial Emotion Recognition as a image classification project. This is a basic deep learning project to learn image classification and visualize the results through different plots.


Get the project notebook from here


Thanks for reading the article!!!


Check out more project videos from the YouTube channel Hackers Realm

3,321 views

Comments


bottom of page