Unleash the power of speech emotion recognition with Python! This comprehensive tutorial explores sound classification and deep learning techniques for decoding emotions from speech. Learn to build accurate models that can detect and classify emotions in spoken words, opening doors to applications in psychology, customer service, and more. Enhance your skills in audio processing, machine learning, and dive into the fascinating world of deep learning. Decode the emotions hidden in speech with this hands-on project tutorial. #SpeechEmotionRecognition #Python #SoundClassification #DeepLearning #AudioProcessing #MachineLearning
In this project tutorial we are going to analyze and classify various audio files to a corresponding class and visualize the frequency of the sounds through a plot.
You can watch the step by step explanation video tutorial down below
Dataset Information
There are a set of 200 target words were spoken in the carrier phrase "Say the word _' by two actresses (aged 26 and 64 years) and recordings were made of the set portraying each of seven emotions (anger, disgust, fear, happiness, pleasant surprise, sadness, and neutral). There are 2800 data points (audio files) in total.
The dataset is organized such that each of the two female actor and their emotions are contain within its own folder. And within that, all 200 target words audio file can be found. The format of the audio file is a WAV format
Output Attributes
anger
disgust
fear
happiness
pleasant surprise
sadness
neutral
Download the dataset here
Import Modules
import pandas as pd
import numpy as np
import os
import seaborn as sns
import matplotlib.pyplot as plt
import librosa
import librosa.display
from IPython.display import Audio
import warnings
warnings.filterwarnings('ignore')
pandas - used to perform data manipulation and analysis
numpy - used to perform a wide variety of mathematical operations on arrays
matplotlib - used for data visualization and graphical plotting
os - used to handle files using system commands
seaborn - built on top of matplotlib with similar functionalities
librosa - used to analyze sound files
librosa.display - used to display sound data as images
Audio - used to display and hear the audio
warnings - to manipulate warnings details
Load the Dataset
paths = []
labels = []
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
paths.append(os.path.join(dirname, filename))
label = filename.split('_')[-1]
label = label.split('.')[0]
labels.append(label.lower())
if len(paths) == 2800:
break
print('Dataset is Loaded')
Dataset is Loaded
The paths of the speech data has been loaded for further processing
Filenames were split and appended as labels
To ensure proper processing all characters were converted to lower case
len(paths)
2800
No. of samples in the dataset
paths[:5]
['/kaggle/input/toronto-emotional-speech-set-tess/TESS Toronto emotional speech set data/YAF_fear/YAF_home_fear.wav', '/kaggle/input/toronto-emotional-speech-set-tess/TESS Toronto emotional speech set data/YAF_fear/YAF_youth_fear.wav', '/kaggle/input/toronto-emotional-speech-set-tess/TESS Toronto emotional speech set data/YAF_fear/YAF_near_fear.wav', '/kaggle/input/toronto-emotional-speech-set-tess/TESS Toronto emotional speech set data/YAF_fear/YAF_search_fear.wav', '/kaggle/input/toronto-emotional-speech-set-tess/TESS Toronto emotional speech set data/YAF_fear/YAF_pick_fear.wav']
First five path files in the dataset
labels[:5]
['fear', 'fear', 'fear', 'fear', 'fear']
First five labels of the speech files in the dataset
Now we create a dataframe of the audio files and labels
## Create a dataframe
df = pd.DataFrame()
df['speech'] = paths
df['label'] = labels
df.head()
File path is the input data
Label is the output data
df['label'].value_counts()
fear 400 angry 400 disgust 400 neutral 400 sad 400 ps 400 happy 400 Name: label, dtype: int64
List of classes in the data set and the amount of samples per class
Exploratory Data Analysis
sns.countplot(df['label'])
All classes in equal distribution
For unequal distribution, you must balance the distribution between classes
Now we define the functions for the waveplot and spectrogram
def waveplot(data, sr, emotion):
plt.figure(figsize=(10,4))
plt.title(emotion, size=20)
librosa.display.waveplot(data, sr=sr)
plt.show()
def spectogram(data, sr, emotion):
x = librosa.stft(data)
xdb = librosa.amplitude_to_db(abs(x))
plt.figure(figsize=(11,4))
plt.title(emotion, size=20)
librosa.display.specshow(xdb, sr=sr, x_axis='time', y_axis='hz')
plt.colorbar()
Waveplot is to view the waveform of the audio file
Spectrogram is to view the frequency levels of the audio file
emotion = 'fear'
path = np.array(df['speech'][df['label']==emotion])[0]
data, sampling_rate = librosa.load(path)
waveplot(data, sampling_rate, emotion)
spectogram(data, sampling_rate, emotion)
Audio(path)
emotion = 'angry'
path = np.array(df['speech'][df['label']==emotion])[1]
data, sampling_rate = librosa.load(path)
waveplot(data, sampling_rate, emotion)
spectogram(data, sampling_rate, emotion)
Audio(path)
emotion = 'disgust'
path = np.array(df['speech'][df['label']==emotion])[0]
data, sampling_rate = librosa.load(path)
waveplot(data, sampling_rate, emotion)
spectogram(data, sampling_rate, emotion)
Audio(path)
emotion = 'neutral'
path = np.array(df['speech'][df['label']==emotion])[0]
data, sampling_rate = librosa.load(path)
waveplot(data, sampling_rate, emotion)
spectogram(data, sampling_rate, emotion)
Audio(path)
emotion = 'sad'
path = np.array(df['speech'][df['label']==emotion])[0]
data, sampling_rate = librosa.load(path)
waveplot(data, sampling_rate, emotion)
spectogram(data, sampling_rate, emotion)
Audio(path)
emotion = 'ps'
path = np.array(df['speech'][df['label']==emotion])[0]
data, sampling_rate = librosa.load(path)
waveplot(data, sampling_rate, emotion)
spectogram(data, sampling_rate, emotion)
Audio(path)
emotion = 'happy'
path = np.array(df['speech'][df['label']==emotion])[0]
data, sampling_rate = librosa.load(path)
waveplot(data, sampling_rate, emotion)
spectogram(data, sampling_rate, emotion)
Audio(path)
Waveplot and spectrogram of an audio file from each class is plotted
Sample audio of emotion speech from each class is displayed
Lower pitched voices have darker colors
Higher pitched voices have more brighter colors
Feature Extraction
Now we define a feature extraction function for the audio files
def extract_mfcc(filename):
y, sr = librosa.load(filename, duration=3, offset=0.5)
mfcc = np.mean(librosa.feature.mfcc(y=y, sr=sr, n_mfcc=40).T, axis=0)
return mfcc
Audio duration capped to max 3 seconds for equal duration of file size
It will extract the Mel-frequency cepstral coefficients (MFCC) features with the limit of 40 and take the mean as the final feature
extract_mfcc(df['speech'][0])
array([-285.2542 , 86.24267 , -2.7735834 , 22.61731 , -15.214631 , 11.602871 , 11.931779 , -2.5318177 , 0.65986294, 11.62756 , -17.814924 , -7.5654893 , 6.2167835 , -3.7255652 , -9.563306 , 3.899267 , -13.657834 , 14.420068 , 19.243341 , 23.024492 , 32.129776 , 16.585697 , -4.137755 , 1.2746525 , -11.517016 , 7.0145273 , -2.8494127 , -7.415011 , -11.150621 , -2.1190548 , -5.4515266 , 4.473824 , -11.377713 , -8.931878 , -3.8482094 , 4.950994 , -1.7254968 , 2.659218 , 11.390564 , 11.3327265 ], dtype=float32)
Feature values of an audio file
X_mfcc = df['speech'].apply(lambda x: extract_mfcc(x))
Returns extracted features from all the audio files
X_mfcc
0 [-285.2542, 86.24267, -2.7735834, 22.61731, -1... 1 [-348.23337, 35.60242, -4.365128, 15.534869, 6... 2 [-339.50308, 54.41241, -14.795754, 21.566118, ... 3 [-306.92944, 21.973307, -5.1588626, 7.6269317,... 4 [-344.88586, 47.05694, -24.83122, 20.24406, 1.... ... 2795 [-374.1317, 61.859463, -0.41998756, 9.31088, -... 2796 [-314.12222, 40.262157, -6.7909045, -3.2963052... 2797 [-357.65854, 78.49201, -15.684815, 3.644915, -... 2798 [-352.78336, 102.219765, -14.560364, -11.48181... 2799 [-389.80002, 54.120773, 0.8988281, -0.6595729,... Name: speech, Length: 2800, dtype: object
Visualization of the features extracted from the data
The more samples in the dataset, the longer the processing time
X = [x for x in X_mfcc]
X = np.array(X)
X.shape
(2800, 40)
Conversion of the list into a single dimensional array
## input split
X = np.expand_dims(X, -1)
X.shape
(2800, 40, 1)
The shape represents the number of samples in the dataset and features in a single dimension array
from sklearn.preprocessing import OneHotEncoder
enc = OneHotEncoder()
y = enc.fit_transform(df[['label']])
y = y.toarray()
y.shape
(2800, 7)
The shape represents the number of samples and number of output classes
Create the LSTM Model
from keras.models import Sequential
from keras.layers import Dense, LSTM, Dropout
model = Sequential([
LSTM(256, return_sequences=False, input_shape=(40,1)),
Dropout(0.2),
Dense(128, activation='relu'),
Dropout(0.2),
Dense(64, activation='relu'),
Dropout(0.2),
Dense(7, activation='softmax')
])
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
model.summary()
Dense - single dimension linear layer with hidden units
Dropout - used to add regularization to the data, avoiding over fitting & dropping out a fraction of the data
Loss='sparse_categorical_crossentropy' - computes the cross-entropy loss between true labels and predicted labels.
Optimizer='adam' - automatically adjust the learning rate for the model over the number of epochs
Now we train the model
# Train the model
history = model.fit(X, y, validation_split=0.2, epochs=50, batch_size=64)
Epoch 1/50 35/35 [==============================] - 2s 18ms/step - loss: 1.0892 - accuracy: 0.6201 - val_loss: 2.0684 - val_accuracy: 0.2946 Epoch 2/50 35/35 [==============================] - 0s 7ms/step - loss: 0.3742 - accuracy: 0.8598 - val_loss: 2.4078 - val_accuracy: 0.2054 Epoch 3/50 35/35 [==============================] - 0s 8ms/step - loss: 0.1671 - accuracy: 0.9487 - val_loss: 1.9055 - val_accuracy: 0.4446 Epoch 4/50 35/35 [==============================] - 0s 8ms/step - loss: 0.1672 - accuracy: 0.9442 - val_loss: 2.7364 - val_accuracy: 0.3179 Epoch 5/50 35/35 [==============================] - 0s 7ms/step - loss: 0.1107 - accuracy: 0.9683 - val_loss: 1.8414 - val_accuracy: 0.5607 Epoch 6/50 35/35 [==============================] - 0s 8ms/step - loss: 0.1082 - accuracy: 0.9585 - val_loss: 2.7303 - val_accuracy: 0.4679 Epoch 7/50 35/35 [==============================] - 0s 9ms/step - loss: 0.1275 - accuracy: 0.9656 - val_loss: 1.2245 - val_accuracy: 0.7232 Epoch 8/50 35/35 [==============================] - 0s 7ms/step - loss: 0.0765 - accuracy: 0.9786 - val_loss: 2.9995 - val_accuracy: 0.3893 Epoch 9/50 35/35 [==============================] - 0s 8ms/step - loss: 0.0577 - accuracy: 0.9795 - val_loss: 3.5068 - val_accuracy: 0.3679 Epoch 10/50 35/35 [==============================] - 0s 8ms/step - loss: 0.0531 - accuracy: 0.9826 - val_loss: 2.3169 - val_accuracy: 0.4786
Epoch 11/50 35/35 [==============================] - 0s 8ms/step - loss: 0.0357 - accuracy: 0.9888 - val_loss: 3.8930 - val_accuracy: 0.4321 Epoch 12/50 35/35 [==============================] - 0s 7ms/step - loss: 0.0554 - accuracy: 0.9835 - val_loss: 1.5915 - val_accuracy: 0.6607 Epoch 13/50 35/35 [==============================] - 0s 7ms/step - loss: 0.0684 - accuracy: 0.9790 - val_loss: 3.4805 - val_accuracy: 0.4589 Epoch 14/50 35/35 [==============================] - 0s 7ms/step - loss: 0.0453 - accuracy: 0.9835 - val_loss: 2.4777 - val_accuracy: 0.4661 Epoch 15/50 35/35 [==============================] - 0s 8ms/step - loss: 0.0874 - accuracy: 0.9737 - val_loss: 4.4744 - val_accuracy: 0.2446 Epoch 16/50 35/35 [==============================] - 0s 8ms/step - loss: 0.0530 - accuracy: 0.9853 - val_loss: 2.9993 - val_accuracy: 0.5232 Epoch 17/50 35/35 [==============================] - 0s 6ms/step - loss: 0.0421 - accuracy: 0.9839 - val_loss: 4.3298 - val_accuracy: 0.4714 Epoch 18/50 35/35 [==============================] - 0s 8ms/step - loss: 0.0514 - accuracy: 0.9857 - val_loss: 2.2161 - val_accuracy: 0.5946 Epoch 19/50 35/35 [==============================] - 0s 7ms/step - loss: 0.0310 - accuracy: 0.9897 - val_loss: 3.7546 - val_accuracy: 0.4071 Epoch 20/50 35/35 [==============================] - 0s 7ms/step - loss: 0.0301 - accuracy: 0.9897 - val_loss: 2.7526 - val_accuracy: 0.5036
Epoch 21/50 35/35 [==============================] - 0s 8ms/step - loss: 0.0342 - accuracy: 0.9875 - val_loss: 4.7068 - val_accuracy: 0.2839 Epoch 22/50 35/35 [==============================] - 0s 8ms/step - loss: 0.0295 - accuracy: 0.9893 - val_loss: 3.4425 - val_accuracy: 0.4054 Epoch 23/50 35/35 [==============================] - 0s 7ms/step - loss: 0.0213 - accuracy: 0.9933 - val_loss: 2.8260 - val_accuracy: 0.5607 Epoch 24/50 35/35 [==============================] - 0s 7ms/step - loss: 0.0255 - accuracy: 0.9933 - val_loss: 4.4797 - val_accuracy: 0.4696 Epoch 25/50 35/35 [==============================] - 0s 7ms/step - loss: 0.0236 - accuracy: 0.9915 - val_loss: 4.2527 - val_accuracy: 0.4143 Epoch 26/50 35/35 [==============================] - 0s 7ms/step - loss: 0.0223 - accuracy: 0.9920 - val_loss: 3.5158 - val_accuracy: 0.4429 Epoch 27/50 35/35 [==============================] - 0s 7ms/step - loss: 0.0245 - accuracy: 0.9929 - val_loss: 3.9560 - val_accuracy: 0.4661 Epoch 28/50 35/35 [==============================] - 0s 7ms/step - loss: 0.0238 - accuracy: 0.9902 - val_loss: 4.4557 - val_accuracy: 0.3893 Epoch 29/50 35/35 [==============================] - 0s 8ms/step - loss: 0.0702 - accuracy: 0.9772 - val_loss: 3.5628 - val_accuracy: 0.3839 Epoch 30/50 35/35 [==============================] - 0s 8ms/step - loss: 0.0165 - accuracy: 0.9951 - val_loss: 3.8458 - val_accuracy: 0.4089
Epoch 31/50 35/35 [==============================] - 0s 8ms/step - loss: 0.0080 - accuracy: 0.9978 - val_loss: 3.8509 - val_accuracy: 0.4339 Epoch 32/50 35/35 [==============================] - 0s 7ms/step - loss: 0.0091 - accuracy: 0.9964 - val_loss: 3.8585 - val_accuracy: 0.4786 Epoch 33/50 35/35 [==============================] - 0s 6ms/step - loss: 0.0146 - accuracy: 0.9960 - val_loss: 4.4246 - val_accuracy: 0.3554 Epoch 34/50 35/35 [==============================] - 0s 7ms/step - loss: 0.0075 - accuracy: 0.9969 - val_loss: 4.4920 - val_accuracy: 0.3911 Epoch 35/50 35/35 [==============================] - 0s 7ms/step - loss: 0.0072 - accuracy: 0.9982 - val_loss: 3.6941 - val_accuracy: 0.4232 Epoch 36/50 35/35 [==============================] - 0s 7ms/step - loss: 0.0244 - accuracy: 0.9933 - val_loss: 2.6108 - val_accuracy: 0.5000 Epoch 37/50 35/35 [==============================] - 0s 7ms/step - loss: 0.0115 - accuracy: 0.9969 - val_loss: 3.3635 - val_accuracy: 0.5750 Epoch 38/50 35/35 [==============================] - 0s 7ms/step - loss: 0.0519 - accuracy: 0.9853 - val_loss: 5.5903 - val_accuracy: 0.2554 Epoch 39/50 35/35 [==============================] - 0s 7ms/step - loss: 0.0369 - accuracy: 0.9906 - val_loss: 3.8724 - val_accuracy: 0.4018 Epoch 40/50 35/35 [==============================] - 0s 7ms/step - loss: 0.0122 - accuracy: 0.9964 - val_loss: 4.3779 - val_accuracy: 0.4250
Epoch 41/50 35/35 [==============================] - 0s 7ms/step - loss: 0.0124 - accuracy: 0.9973 - val_loss: 3.4232 - val_accuracy: 0.4893 Epoch 42/50 35/35 [==============================] - 0s 7ms/step - loss: 0.0095 - accuracy: 0.9969 - val_loss: 4.3362 - val_accuracy: 0.3804 Epoch 43/50 35/35 [==============================] - 0s 8ms/step - loss: 0.0089 - accuracy: 0.9978 - val_loss: 3.9718 - val_accuracy: 0.4911 Epoch 44/50 35/35 [==============================] - 0s 7ms/step - loss: 0.0058 - accuracy: 0.9987 - val_loss: 3.5679 - val_accuracy: 0.5018 Epoch 45/50 35/35 [==============================] - 0s 7ms/step - loss: 0.0074 - accuracy: 0.9982 - val_loss: 4.0037 - val_accuracy: 0.4607 Epoch 46/50 35/35 [==============================] - 0s 7ms/step - loss: 0.0030 - accuracy: 0.9991 - val_loss: 4.6531 - val_accuracy: 0.3982 Epoch 47/50 35/35 [==============================] - 0s 8ms/step - loss: 0.0076 - accuracy: 0.9982 - val_loss: 5.2379 - val_accuracy: 0.3571 Epoch 48/50 35/35 [==============================] - 0s 7ms/step - loss: 0.0082 - accuracy: 0.9973 - val_loss: 4.3685 - val_accuracy: 0.4357 Epoch 49/50 35/35 [==============================] - 0s 7ms/step - loss: 0.0155 - accuracy: 0.9964 - val_loss: 4.8508 - val_accuracy: 0.3804 Epoch 50/50 35/35 [==============================] - 0s 6ms/step - loss: 0.0079 - accuracy: 0.9982 - val_loss: 5.0355 - val_accuracy: 0.3750
Display of the results during each epoch of training
batch_size=64 - amount of data to process per step
epochs=50 - no. of iterations for training the model
validation_split=0.2 - train and test split percentage
The training accuracy and validation accuracy increases each iteration
best validation accuracy is 72.32
use checkpoint to save the best validation accuracy model
adjust learning rate for slow convergence
Plot the results
Now we visualize the results through plot graphs
epochs = list(range(50))
acc = history.history['accuracy']
val_acc = history.history['val_accuracy']
plt.plot(epochs, acc, label='train accuracy')
plt.plot(epochs, val_acc, label='val accuracy')
plt.xlabel('epochs')
plt.ylabel('accuracy')
plt.legend()
plt.show()
loss = history.history['loss']
val_loss = history.history['val_loss']
plt.plot(epochs, loss, label='train loss')
plt.plot(epochs, val_loss, label='val loss')
plt.xlabel('epochs')
plt.ylabel('loss')
plt.legend()
plt.show()
Final Thoughts
Deep learning models give more accuracy results compared to machine learning algorithms
Sound features are extracted and used for training the speech emotion recognition model
More training data will get you better accuracy
This model can be reused differently depending on the data set and parameters, including speech recognition or other sound related tracks
In this project tutorial, we have explored the Speech Emotion Recognition dataset as a classification project under deep learning. Different speech emotion sounds were identified and classified with explanatory data analysis
Get the project notebook from here
Thanks for reading the article!!!
Check out more project videos from the YouTube channel Hackers Realm
Kommentare